Research Topics

Background and objectives

Wood, the most abundant lignocellulosic biomass on earth, is widely used for lumber and paper manufacture and increasingly exploited as an environmentally cost-effective, renewable source of energy. The major technological barrier to the efficient use of lignocellulosic biomass for biofuels is the secondary cell walls’ (SCW) recalcitrance to degradation.

The main goal of the “Eucalyptus functional genomics” group is to understand the regulation of wood formation during development and in response to environmental cues. While improving our basic knowledge of this complex process, we aim at identifying regulatory genes, which control wood properties in order to select/design trees more adapted to specific wood end-uses.

Our target plant is Eucalyptus, the first planted forest tree in the world [20M ha] and the second whose genome has been sequenced [Myburg et al, 2014].

The team has been involved in E. grandis genome assembly and annotation [Myburg et al. 2014] and performed in-depth genome-wide analyses of ten lignin gene families [Carocha et al, 2015] and of key transcription factors families: R2R3-MYBs [Soler et al, 2015], NACs [Hussey et al, 2015], ARFs [Yu et al, 2014] and Aux/IAAs [Yu et al, 2015], AP2/ERF and GRAS [Cao et al,  ]. The genome-wide study of these gene families highlighted some new features.

For instance, the comparative phylogenetic analysis of the R2R3 MYB stressed out some subgroups that were more expanded in woody plants than in herbaceous plants, and strikingly new subgroups that seem to contain only members from woody plants, being absent in Arabidopsis and rice. Remarkably, 94% of the tandem duplicated R2R3-MYB genes belong to those woody-expanded and woody-preferential subgroups. All members of three woody-preferential subgroups are preferentially expressed in secondary cambium. Cambial activity is responsible for secondary-growth, one major feature of woody perennial plants.

A major outcome of this work was to highlight promising candidate genes possibly involved in the control of wood formation during development and in responses to stresses. We chose some of these candidate genes according to their expression patterns and novelty for functional characterization and transformed Arabidopsis and poplar lines with overexpressing and/or dominant repressor constructs. For instance, the ectopic expression of stabilized Eucalyptus Aux/IAA gene EgIAA4 in Arabidopsis impressively reduced primary and lateral growth lead to drawf plant with very thin stem, especially greatly inhibited interfascular fiber development (Figure below, Yu et al 2015). The overexpression of other two Eucalyptus Aux/IAA genes in Arabidopsis also greatly reduce fiber cell development.

 

We also implemented E. grandis hairy root systems suitable for medium throughput functional studies of genes involved in secondary cell wall biosynthesis. As a proof-of-concept, we down-regulated the Cinnamoyl-CoA Reductase1 (EgCCR1) gene [Plasencia et al, 2015] and analyzed roots using histochemical, transcriptomic and biochemical approaches.

Fig . Development and validation of a fast system for functional characterization of candidate genes in a homolog system of Eucalyptus using hairy roots.                   

A. Eucalyptus plants transformed with A. rhizogenes harbouring a plasmid with 35S:GFP were detected under fluorescence 21 days after infection. B. Composite plants resulting of the A. rhizogenes transformation were hardened in pots with inert substrate and are ready to be harvested after 60-90 days after infection. C. Suitability of this system was assessed by transforming Eucalyptus with the antisense construct of the CCR gene, showing hairy roots section stained with phloroglucinol reagent with thinner xylem cell walls and lower lignin content. D. Deeper analysis using Scanning Electron Microscopy demonstrated thinner xylem cell walls with a phenotype resembling to irregular xylem, as previously observed (Piquemal et al. 1998).

Wood formation is highly plastic and responds to both abiotic and nutritional stresses.

        

Fig SEM images of Eucalyptus xylem SCW under limiting (left) and luxuriant (right) nitrogen fertilization conditions [Camargo et al, 2014]

Fig SEM images of Eucalyptus xylem SCW under [Ployet et al, 2017]

We develop system biology approaches aiming to integrate transcriptomic, metabolomic and epigenomic data in order to highlight regulatory pathways involved in cold or drought stress.

 

To cope with abiotic stresses using limited resources, plants have evolved diverse mechanisms underlying a trade-off between stress tolerance and plant growth. However, to date, the precise molecular mechanisms involved in this trade-off are yet to be investigated.

Given its opportunistic growth without endormancy, Eucalyptus represents a suitable model to address this question. On various woody species including Eucalyptus, abundant transcriptomics data have highlighted the DREB1/CBF (“Drought Responsive Element Binding/ CRT-repeat Binding Factor”) as a key transcription factor in the cold-induced regulation (Wisniewski et al, 2014). Moreover, the spectacular increase of CBF family members in Eucalyptus compared to other species, suggests that these transcriptional factors are master regulators of cold tolerance in this species (Cao et al 2015). Together with the comparison of Eucalyptus species (Nguyen et al, 2017), the phenotype of Eucalyptus CBF-overexpressors (CBF-OE) provided strong evidence of the involvement of CBF in the cross-talk between cold tolerance and growth (Navarro et al, 2011; Cao et al, submitted).

Beyond the compromise between primary growth and stress tolerance, a vascular trade-off between conduction efficiency and resistance to cavitation is often described but molecular is still to be elucidated. Recent investigations on wood properties of CBF-OE shed a new light on the gene regulation of this trade-off. The data indicated a deep remodelling of xylem architecture including a strong decrease of vessel and fibre diameters accompanied with a proportional increase in cell density in CBF-OE compared to control. In addition, CBF overexpression was found to influence the dynamics of xylem differentiation through a limited activity of the cambial zone resulting in less immature cell layers in CBF-OE. Interestingly, small vessels are associated with lower xylem vulnerability to cavitation which is consistent with improvement of stem frost tolerance observed in CBF-OE. Moreover, these transgenic Eucalyptus lines exhibit both an increase in lignin content and a modification in monomer composition (higher S/G ratio), in agreement with modifications of xylem architecture. These data suggest that CBF may control xylem maturation and architecture under stress.

Interestingly, the Aux-IAA family was described in our hands as hubs for integrating environmental and developmental signals including wood formation in Eucalyptus (Xu et al, 2015). Now, it was recently reported that, in Arabidopsis, two Aux/IAA genes probably act as intermediates between the CBF genes and xylem development (Shani et al, 2017). In Eucalyptus genome, Aux/IAA19 is the unique ortholog of these two Aux/IAA genes from Arabidopsis. Both Aux/IAA19 and Aux/IAA4 from Eucalyptus exhibit CBF binding cis-elements (DRE/LTRE) in their promoter sequences. In addition, these two genes were found to be expressed in cambium tissues (Yu 2014) and in response to abiotic stresses (Ployet et al, submitted). Based on a functional study of our group, Aux/IAA4 was described to play a major role in xylem anatomy (Xu et al, 2015).

Altogether, these elements suggest that Aux/IAA factors might be CBF targets for the control of Eucalyptus wood formation under stress, as shown in the hypothetic model we propose below. For the future, it will be very attractive to study more in depth the cross-talks between these two families of transcription factors for deciphering the trade-off between growth and tolerance, representing the balance between efficiency and safety for Eucalyptus as a model tree species.

 

Because protein-protein interaction is a major mechanism regulating the activity of TFs, we constructed a yeast-two-hybrid library from Eucalyptus xylem and started to seek for the protein partners of EgMYB1, a transcription factor known to repress lignin biosynthesis (Legay et al, 2007, 2010). EgMYB1 interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1’s target genes, strongly limiting the amount of lignin deposited in xylem cell walls. Our results suggest that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space (Soler et al, 2016b).

Publications

2017

Ployet R, Soler M, Carocha V, Ladouce N, Alves A, Rodrigues JC, Harvengt L, Marque C, Teulières C, Grima-Pettenati J, Mounet F (2017) Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus. Tree Physiol: 1-14

Nguyen HC, Cao PB, San Clemente H, Ployet R, Mounet F, Ladouce N, Harvengt L, Marque C, Teulieres C (2017) Special trends in CBF and DREB2 groups in Eucalyptus gunnii vs Eucalyptus grandis suggest that CBF are master players in the trade-off between growth and stress resistance. Physiol Plant 159: 445-467

2016

Barrière Y, Courtial A, Chateigner-Boutin AL, Denoue D, Grima-Pettenati J (2016) Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence. Plant Science 242: 310-329

Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal 14: 1381-1393

Sixto H, Gonzalez-Gonzalez BD, Molina-Rueda JJ, Garrido-Aranda A, Sanchez MM, Lopez G, Gallardo F, Canellas I, Mounet F, Grima-Pettenati J, Canton F (2016) Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees-Structure and Function 30: 1873-1891

Soler M, Plasencia A, Larbat R, Pouzet C, Jauneau A, Rivas S, Pesquet E, Lapierre C, Truchet I, Grima-Pettenati J (2017) The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. New Phytologist 213: 287-299

Soler M, Plasencia A, Lepikson-Neto J, Camargo ELO, Dupas A, Ladouce N, Pesquet E, Mounet F, Larbat R, Grima-Pettenati J (2016) The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood. Frontiers in Plant Science 7

2015

Barriere, Y., A. Courtial, M. Soler and J. Grima-Pettenati (2015). “Toward the identification of genes underlying maize QTLs for lignin content, focusing on colocalizations with lignin biosynthetic genes and their regulatory MYB and NAC transcription factors.” Molecular Breeding 35(3).

Cao, P. B., S. Azar, H. SanClemente, F. Mounet, C. Dunand, G. Marque, C. Marque and C. Teulieres (2015). “Genome-wide analysis of the AP2/ERF family in Eucalyptus grandis : an intriguing over-representation of stress-responsive DREB1/CBF genes.” PLoS One 10(4) : e0121041.

Carocha, V., M. Soler, C. Hefer, H. Cassan-Wang, P. Fevereiro, A. A. Myburg, J. A. Paiva and J. Grima-Pettenati (2015). “Genome-wide analysis of the lignin toolbox of Eucalyptus grandis.” New Phytol 206(4) : 1297-1313.

Hussey, S. G., M. N. Saidi, C. A. Hefer, A. A. Myburg and J. Grima-Pettenati (2015). “Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus.” New Phytol 206(4) : 1337-1350.

Li, Q., H. Yu, P. B. Cao, N. Fawal, C. Mathe, S. Azar, H. Cassan-Wang, A. A. Myburg, J. Grima-Pettenati, C. Marque, C. Teulieres and C. Dunand (2015). “Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis.” Genome Biol Evol 7(4) : 1068-1081.

Soler, M., E. L. Camargo, V. Carocha, H. Cassan-Wang, H. San Clemente, B. Savelli, C. A. Hefer, J. A. Paiva, A. A. Myburg and J. Grima-Pettenati (2015). “The Eucalyptus grandis R2R3-MYB transcription factor family : evidence for woody growth-related evolution and function.” New Phytol 206(4) : 1364-1377.

Yu, H., M. Soler, H. San Clemente, I. Mila, J. A. Paiva, A. A. Myburg, M. Bouzayen, J. Grima-Pettenati and H. Cassan-Wang (2015). “Comprehensive Genome-Wide Analysis of the Aux/IAA Gene Family in Eucalyptus : Evidence for the Role of EgrIAA4 in Wood Formation.” Plant Cell Physiol 56(4) : 700-714.

2014

Yu, H., M. Soler, I. Mila, H. San Clemente, B. Savelli, C. Dunand, J. A. Paiva, A. A. Myburg, M. Bouzayen, J. Grima-Pettenati and H. Cassan-Wang (2014). “Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF) gene family in Eucalyptus grandis.” PLoS One 9(9) : e108906.

Myburg A, Grattapaglia D, Tuskan G, Hellsten U, Hayes R, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein D, Dubchak I, Poliakov A, Mizrachi E, Kullan A, Van Jaarsveld I, Hussey S, Pinard D, Silva-Junior O, Togawa R, Pappas M, Faria D, Sansaloni C, Petroli C, X Yang, P Ranjan, T Tschaplinski, C Ye, Ting Li, L Sterck, K Vanneste, F Murat, Soler M, San Clemente H , Saidi N, Cassan-Wang H, Dunand C, Hefer C, Bornberg-Bauer E, Kersting A, Vinnig K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd A, Liston A, Spatafora J, Dharmawardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira A, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel S, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones R, Steane D, Vaillancourt R, Potts B, Barry K, Pappas G Jr, Strauss S, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar D, Schmutz J, Van der Merwe K, Singh P, Joubert F (2014) The genome of Eucalyptus grandis – a global tree for fiber and energy Nature 510(7505), 356–362 doi:10.1038/nature13308

Wisniewski M, Nassuth A, Teulières C, Marque C, Rowland J, Cao PB, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33 : 92-124.

Courtial A, Méchin V, Reymond M, Grima-Pettenati J, Barrière Y (2014). Colocalizations between several QTLs for cell wall degradability and composition in the F288 x F271 early maize RIL progeny raise the question of the nature of the possible underlying determinants and breeding targets for biofuel capacity. BioEnergy Res 7 : 142-156.

De la Torre F, Rodríguez R, Gago J, Villar B, Álvarez-Otero R, Grima-Pettenati J, Gallego PP (2014) Genetic transformation of Eucalyptus globulus : advantages of using the vascular-specific EgCCR over the constitutive CaMV35S promoter. Plant Cell Tiss Organ Cult 117 : 77-84 .

Camargo ELO, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJPL, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira G. (2014). Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol 14:256

2013

Keller G, Cao PB, San Clemente H, El Kayal W, Marque C, and Teulières C. (2013) Transcript profiling combined with functional annotation of 2,662 ESTs provides a molecular picture of Eucalyptus gunnii cold acclimation. trees, DOI : 10.1007/s00468-013-0918-5

Cassan-Wang H, Goue N, Saidi MN, Legay S, Sivadon P, Goffner D, and Grima-Pettenati J. 2013. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci 4, 189.

Courtial A, Soler M, Chateigner-Boutin A, Reymond M, Méchin V, Wang H, Grima-Pettenati J, Barriere Y. (2013) Breeding grasses for capacity to biofuel production or silage feeding value : An updated list of genes involved in maize secondary cell wall biosynthesis and assembly. Maydica 58 : 67-102.

Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y (2013) Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. Theor Appl Genet 126  : 1151-1165.

2012

Cassan-Wang H, Soler M, Yu H, Camargo, ELO, Carocha V, Ladouce N, Savelli B, Paiva JaP, Leple JC, and Grima-Pettenati J 2012. Reference Genes for High-Throughput Quantitative Reverse Transcription-PCR Analysis of Gene Expression in Organs and Tissues of Eucalyptus Grown in Various Environmental Conditions. Plant and Cell Physiology 53 , 2101-16.

Amelot N, Dorlhac De Borne F, San Clemente H, Mazars C, Grima-Pettenati J, Briere C 2012. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium 51 , 117-30.

De Micco V, Ruel K, Joseleau JP, Grima-Pettenati J, Aronne G. (2012) Xylem anatomy and cell wall ultrastructure of Nicotianan tabacum L. after lignin genetic modification through transcriptional activator EgMYB2. IAWA Journal, Vol. 33 (3) 1–18

Azar S, Marque G, Clanet C, Marque C and Teulières C. (2012) Natural Variation in CBF Gene Sequence and Freezing Tolerance in Eucalyptus gunnii. ScienceMED, vol. 3, 259-265, Bologna

Courtial C, Jourda C, Arribat S, Balzergue S, Huguet S, Reymond M, Grima-Pettenati J, Barrière Y (2012) Comparative expression of cell wall related genes in four maize RILs and one parental line of variable lignin content and cell wall degradability. Maydica 57:56-74

Ouvrage international

Grima-Pettenati J, Soler M, Camargo E and Wang H. Transcriptional Regulation of the Lignin Biosynthetic Pathway Revisited : New Players and Insights. In Lise Jouanin and Catherine Lapierre, editors : Advances in Botanical Research, Vol. 61, Burlington : Academic Press, 2012, pp. 173-218. ISBN : 978-0-12-416023-1

2011

Amelot N, Carrouche A, Danoun S, Bourque S, Haiech J, Pugin A, Ranjeva R, Grima-Pettenati J, Mazars C, Briere C (2011) Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner. Plant Cell Environ 34 : 149-161

Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9 : 50-63

Paiva JAP, Prat E, Vautrin S, Santos MD, San-Clemente H, Brommonschenkel S, Fonseca PGS, Grattapaglia D, Song XA, Ammiraju JSS, Kudrna D, Wing RA, Freitas AT, Berges H, Grima-Pettenati J (2011) Advancing Eucalyptus genomics : identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics 12 : 137

Gago J, Grima-Pettenati J, Gallego PP (2011) Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L. cv. Albarino) conferred by the EgCCR promoter of Eucalyptus gunnii. Plant Physiology and Biochemistry 49 : 413-419

Gion JM, Carouche A, Deweer S, Bedon F, Pichavant F, Charpentier JP, Bailleres H, Rozenberg P, Carocha V, Ognouabi N, Verhaegen D, Grima-Pettenati J, Vigneron P, Plomion C Comprehensive genetic dissection of wood properties in a widely-grown tropical tree : Eucalyptus. Bmc Genomics 12 : 301

Wang H, Soler M, Yu H, Camargo E, San Clemente H, Savelli B, Ladouce N, Paiva J, Grima-Pettenati1 J (2011) Master regulators of wood formation in Eucalyptus. Wang et al. BMC Proceedings 2011, 5 (Suppl 7) : P110. http://www.biomedcentral.com/1753-6…

Camargo E, Costa L, Soler M, Salazar M, Lepikson J, Gonçalves D, Marques W, Carazzolle M, Martinez Y, Grima-Pettenati J, Pereira G (2011) Effects of nitrogen fertilization on global xylem transcript profiling of Eucalyptus urophylla x grandis evaluated by RNA-seq technology. BMC Proceedings, 5(Suppl 7):P106 http://www.biomedcentral.com/1753-6…

Paiva J, Rodrigues JC, Fevereiro P, Neves L, Araújo C, Marques C, Freitas AT, Bergès H, Grima-Pettenati J (2011) Building up resources and knowledge to unravel transcriptomics dynamics underlying Eucalyptus globulus xylogenesis. BMC Proceedings, 5(Suppl 7):O52

2010

Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Seguin A, MacKay J (2010) Subgroup 4 R2R3-MYBs in conifer trees : gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61 : 3847-3864

Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Seguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytologist 188 : 774-786

Rahantamalala A, Rech P, Martinez Y, Chaubet-Gigot N, Grima-Pettenati J, Pacquit V (2010) Coordinated transcriptional regulation of two key genes in the lignin branch pathway—CAD and CCR—is mediated through MYB- binding sites. BMC Plant Biol 10 : 130

Saidi MN, Ladouce N, Hadhri R, Grima-Pettenati J, Drira N, Gargouri-Bouzid R (2010) Identification and characterization of differentially expressed ESTs in date palm leaves affected by brittle leaf disease. Plant Science 179 : 325-332

2009

Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulieres C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60 : 2713-2724

Keller G, Marchal T, SanClemente H, Navarro M, Ladouce N, Wincker P, Couloux A, Teulières C and Marque C (2009) Development and functional annotation of a 11303 EST collection from Eucalyptus for studies of cold tolerance, Tree genetics and genome 5 : 317-327.

Bedon F, Levasseur C, Grima-Pettenati J, Seguin A, MacKay J (2009) Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Rep 28 : 787-800

Foucart C, Jauneau A, Gion JM, Amelot N, Martinez Y, Panegos P, Grima-Pettenati J, Sivadon P (2009) Overexpression of EgROP1, a Eucalyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana. New Phytol 183 : 1014-1029

Rengel D, San Clemente H, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biol 9 : 36

2008

Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JE, Blais S, Tremblay L, Morency MJ, Pavy N, Grima-Pettenati J, Seguin A, Mackay J (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis : a comparative in planta analysis. J Exp Bot 59 : 3925-3939

Wadenback J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17 : 379-392

2007

Bedon F, Grima-Pettenati J, Mackay J (2007) Conifer R2R3-MYB transcription factors : sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol 7 : 17

Legay S, Lacombe E, Goicoechea M, Briere C, Seguin A, Mackay J, Grima-Pettenati J (2007) Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Science 173 : 542-549

Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefebvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar : multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19 : 3669-3691

2006

Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S (2006) Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. Plant Physiol Biochem 44 : 674-683

El Kayal W, Keller G, Debayles C, Kumar R, Weier D, Teulieres C, Marque C (2006) Regulation of tocopherol biosynthesis through transcriptional control of tocopherol cyclase during cold hardening in Eucalyptus gunnii. Physiologia Plantarum 126 : 212-223

El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57 : 2455-2469

Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170 : 739-752

2005

Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem 43 : 746-753

Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43 : 553-567

Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167 : 89-100

2004

Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55 : 263-280

2003

Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics : a better control of synthesis for new and improved uses. Trends Plant Sci 8 : 576-581

Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Res 12 : 403-411

Valerio L, Carter D, Rodrigues JC, Tournier V, Gominho J, Marque C, Boudet AM, Maunders M, Pereira H, Teulieres C (2003) Down regulation of cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Molecular Breeding 12 : 157-167

Hawkins S, Boudet A, Grima-Pettenati J (2003) Characterisation of caffeic acid O-methyltransferase and cinnamyl alcohol dehydrogenase gene expression patterns by in situ hybridisation in Eucalyptus gunnii Hook. plantlets. Plant Science 164 : 165-173

Rech P, Grima-Pettenati J, Jauneau A (2003) Fluorescence microscopy : a powerful technique to detect low GUS activity in vascular tissues. Plant J 33 : 205-209

Theses

Thèses en cours

*******************

Thèses achevées

Raphaël Ployet (2013-2017) Régulation de la formation du bois chez l’Eucalyptus lors du développement et en réponse à des contraintes environnementales.

Chien Nguyen (2012-2016) Etude de la régulation et du mode d’action des facteurs de transcription DREB dans la réponse aux stress abiotiques chez l’Eucalyptus.

Anna Plasencia (2012-2015) Régulation transcriptionnelle de la xylogenèse : étude du rôle des complexes transcriptionnels impliquant les facteurs de transcription EgMYB1 et EgMYB2

Hong Yu (2010-2014) Caractérisation des familles de gène ARF et Aux/IAA chez l’Eucalyptus et leur rôle dans la formation du bois

Bang Cao (2009-2013) Rôle des facteurs de transcription CBF dans le contrôle du développement de l’Eucalyptus en condition de stress

Audrey Courtial (2009-2012) Vers l’identification de gènes contrôlant la dégradabilité de la paroi secondaire lignifiée chez le maïs à travers l’élucidation de QTLs à effets forts

Sahar Azar (2009-2012) Développement de marqueurs moléculaires SNP sur les gènes de facteurs de transcription CBF en vue de l’amélioration de la tolérance au froid de l’Eucalyptus

Nicolas Amelot (2010) « Couplage entre signalisation calcique et modulation du transcriptome en réponse à la cryptogéine chez de cellules de tabac ». (en co-direction avec l’équipe “Signalisation calcique”).

Marie Navarro (2009) « Analyse fonctionnelle d’un gène de facteur de transcription (CBF) impliqué dans la tolérance au froid de l’Eucalyptus ».

Anja Ramantalala (2009) « Identification et caractérisation des éléments cis régulateurs des promoteurs des gènes EgCAD2 et EgCCR codant des enzymes clés de la voie de biosynthèse des lignines chez l’Eucalyptus ».

Sylvain Legay (2008) « Caractérisation fonctionnelle de deux facteurs de transcription MYB R2R3 : rôle dans la formation du bois chez les angiospermes ». (en co-direction avec Prof J Mackay à l’Université Laval, Québec, Canada).

Gilles Marque (2008) « Recherche des polymorphismes de séquence et d’expression de gènes codant les facteurs de transcription CBF chez l’Eucalyptus en vue de la sélection assistée par marqueurs ».

Frank Bedon (2007) « Structure génique et caractérisation fonctionnelle de facteurs de transcription MYB-R2R3 impliqués dans la formation du xylème chez les conifères ». (en co-direction avec Prof J Mackay à l’Université Laval, Québec, Canada)..

Camille Foucart (2006) « Recherche et caractérisation fonctionnelle de gènes régulateurs impliqués dans la xylogenèse chez Eucalyptus gunnii ».

Guylaine Keller (2006) « Analyse du transcriptome de l’Eucalyptus pendant l’acclimatation au froid : Recherche de gènes candidats de tolérance au gel »

Walid El Kayal (2004) « Réponses aux stress abiotiques chez Eucalyptus gunnii : analyse globale sur filtres hautes densité et caractérisation moléculaire du gène Sxd1 (synthèse de la VitE) » .

Etienne Paux (2004) « Identification de gènes-candidats impliques dans la formation du xylème chez l’Eucalyptus ».

Phone

Standard :    +33 5.34.32.38.01
Fax           :   +33 5.34.32.38.02

Find us

24, chemin de Borde-Rouge.BP 42617 Auzeville.
31326, Castanet-Tolosan. FRANCE

Follow us