Logo tutelle
Universite Paul Sabatier


Sur ce site

Sur le Web du CNRS

Accueil du site > Equipes de recherche > Peroxydases : évolution et expression > Thèmes de recherche > Cell wall plasticity in various Pyrenean altitudinal A. thaliana ecotypes

Cell wall plasticity in various Pyrenean altitudinal A. thaliana ecotypes

Contact : mail to Christophe DUNAND, mail to harold DURUFLE et mail to Philippe RANOCHA (Peroxidases : evolution and expression team)
mail to Vincent BURLAT et mail to Elisabeth JAMET (Cell wall proteins and Development team)

Global warming is a current concern because of its potential effects on biodiversity and the agricultural sector. A better understanding of the adaptation of plants to this recent phenomenon therefore represents a major interest for science and society. The molecular actors of the adaptation of plants to climate are little known. The walls of the plant cells represent an external barrier sensitive to environmental changes. Their structure and composition can be modified.

PNG - 470.5 ko

The objectives of this project are to evaluate Arabidopsis thaliana responses to global warming through an innovative integrative approach combining ecology, genetics, omic technologies and phenotyping data. To relate these results to a problem of global warming, these analyzes focused on natural populations coming from contrasted altitudes of the Pyrenees
An integrative approach is only possible when data as different as gene and protein expression data, weather data or phenotypic analyzes are produced. Experimental and analytical locks encountered and inherent to heterogeneous data processing have had to be removed (Hervé et al, 2016 ; Duruflé et al, 2017a). _Genetic and phenotypic analyzes were carried out on the new populations identified and harvested in the Pyrenees (Duruflé et al, 2017b). Moreover, the links between genetics, climatic origin and phenotypic specificity should demonstrate the distribution and natural variability of the Pyrenean populations. Two integrative studies of omic data on the theme of parietal plasticity subjected to optimal and sub-optimal temperature conditions were initiated. The first studied rosettes of two known ecotypes from contrasting growth conditions (Duruflé et al, 2017b). The second study in progress is focused on a selection of four Pyrenean populations.
By generating and combining ecological, biochemical, metabolomic and genomic data, the WallOmics project aims to understand the molecular basis of wall changes in the face of climate change by analyzing Pyrenean populations of A. thaliana from contrasted altitudes.